First-Order Logic Part One

Recap from Last Time

Recap So Far

- A propositional variable is a variable that is either true or false.
- The propositional connectives are as follows:
- Negation: $\neg p$
- Conjunction: $p \wedge q$
- Disjunction: $p \vee q$
- Implication: $p \rightarrow q$
- Biconditional: $p \leftrightarrow q$
- True: \top
- False: \perp

Take out a sheet of paper!

What's the truth table for the \rightarrow connective?

What's the negation of $p \rightarrow q$?

New Stuff!

First-Order Logic

What is First-Order Logic?

- First-order logic is a logical system for reasoning about properties of objects.
- Augments the logical connectives from propositional logic with
- predicates that describe properties of objects,
- functions that map objects to one another, and
- quantifiers that allow us to reason about multiple objects.

Some Examples

Likes(You, Eggs) ^Likes(You, Tomato) \rightarrow Likes(You, Shakshuka)

Likes(You, Eggs) ^Likes(You, Tomato) \rightarrow Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)
In(MyHeart, Havana) ^ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) \wedge Likes(You, Tomato) \rightarrow Likes $($ You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)
In(MyHeart, Havana) ^ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ^Likes(You, Tomato) \rightarrow Likes(You, Shakshuka)

Learns(You, History) v ForeverRepeats(You, History)
In(MyHeart, Havana) ^ TookBackTo(Him, Me, EastAtlanta)

These blue terms are called constant symbols. Unlike propositional variables, they refer to objects, not propositions.

Likes(You, Eggs) ^Likes(You, Tomato) \rightarrow Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)
In(MyHeart, Havana) ^ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ^Likes(You, Tomato) \rightarrow Likes(You, Shakshuka)

Learns(You, History) v ForeverRepeats(You, History)
In(MyHeart, Havana) ^ TookBackTo(Him, Me, EastAtlanta)

The red things that look like function calls are called predicates.
Predicates take objects as arguments and evaluate to true or false.

Likes(You, Eggs) ^Likes(You, Tomato) \rightarrow Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)
In(MyHeart, Havana) ^ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ^ Likes(You, Tomato) \rightarrow Likes(You, Shakshuka)

Learns(You, History) v ForeverRepeats(You, History)
In(MyHeart, Havana) ^ TookBackTo(Him, Me, EastAtlanta)

Abstract

What remains are traditional propositional connectives. Because each predicate evaluates to true or false, we can connect the truth values of predicates using normal propositional connectives.

Reasoning about Objects

- To reason about objects, first-order logic uses predicates.
- Examples:

Cute(Quokka)
Cool(CS103 students)

- Applying a predicate to arguments produces a proposition, which is either true or false.
- Typically, when you're working in FOL, you'll have a list of predicates, what they stand for, and how many arguments they take. It'll be given separately from the formulas you write.

First-Order Sentences

- Sentences in first-order logic can be constructed from predicates applied to objects:

$$
\begin{gathered}
\text { Cute }(a) \rightarrow \operatorname{Dikdik}(a) \vee \operatorname{Kitty}(a) \vee \operatorname{Puppy}(a) \\
\text { Succeeds }(Y o u)
\end{gathered} \leftrightarrow \operatorname{Practices(You)} \text { (Y) }
$$

$$
x<8 \rightarrow x<137
$$

The less-than sign is just another predicate. Binary predicates are sometimes written in infix notation this way.

Numbers are not "built in" to first-order logic. They're constant symbols just like
"You" and "a" above.

Equality

- First-order logic is equipped with a special predicate $=$ that says whether two objects are equal to one another.
- Equality is a part of first-order logic, just as \rightarrow and \neg are.
- Examples:

$$
\begin{aligned}
& \text { MilesMorales }=\text { SpiderMan } \\
& \text { MorningStar }=\text { EveningStar }
\end{aligned}
$$

- Equality can only be applied to objects; to state that two propositions are equal, use \leftrightarrow.

Let's see some more examples.

FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) \wedge StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) \wedge StarOf(FavoriteMovieOf(You)) $=$ StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) ^ StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

> FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) \wedge StarOf(FavoriteMovieOf(You)) $=$ StarOf(FavoriteMovieOf(Date) $)$

FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) ^ StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are functions.
Functions take objects as input and produce objects as output.

> FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) \wedge StarOf(FavoriteMovieOf(You)) $=$ StarOf(FavoriteMovieOf(Date) $)$

FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) \wedge StarOf(FavoriteMovieOf(You)) $=$ StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) \neq FavoriteMovieOf(Date) \wedge StarOf(FavoriteMovieOf(You)) $=$ StarOf(FavoriteMovieOf(Date))

Functions

- First-order logic allows functions that return objects associated with other objects.
- Examples:

$$
\begin{gathered}
\text { ColorOf(Money) } \\
\text { MedianOf(} x, y, z) \\
x+y
\end{gathered}
$$

- As with predicates, functions can take in any number of arguments, but always return a single value.
- Functions evaluate to objects, not propositions.

Objects and Predicates

- When working in first-order logic, be careful to keep objects (actual things) and propositions (true or false) separate.
- You cannot apply connectives to objects:
$\triangle \quad$ Venus \rightarrow TheSun
- You cannot apply functions to propositions:
$\triangle \operatorname{StarOf(IsRed}($ Sun $) \wedge$ IsGreen(Mars)) $₫$
- Ever get confused? Just ask!

The Type-Checking Table

	\ldots operate on \ldots	\ldots and produce
Connectives $(\leftrightarrow, \wedge$, etc. $) \ldots$	propositions	a proposition
Predicates $(=$, etc. $) \ldots$	objects	a proposition
Functions \ldots	objects	an object

One last (and major) change

Some spider is radioactive.

Some spider is radioactive.

$\exists s .(S p i d e r(s) ~ \wedge ~ R a d i o a c t i v e(s)) ~$

Some spider is radioactive.

$\exists s .(S p i d e r(s) \wedge$ Radioactive(s))

\exists is the existential quantifier and says "for some choice of s, the following is true."

The Existential Quantifier

- A statement of the form

$\exists x$. some-formula

is true if there exists a choice of x where some-formula is true when that x is plugged into it.

- Examples:
$\exists x .(E v e n(x) \wedge \operatorname{Prime}(x))$
$\exists x .($ TallerThan $(x, m e) \wedge \operatorname{LighterThan(x,~me))~}$
$(\exists w . \operatorname{Will}(w)) \rightarrow(\exists x . \operatorname{Way}(x))$

The Existential Quantifier

$\exists x . \operatorname{Smiling}(x)$

The Existential Quantifier

The Existential Quantifier

$\exists x . \operatorname{Smiling}(x)$

The Existential Quantifier

$(\exists x . S m i l i n g(x)) \rightarrow(\exists y$. WearingHat(y))

The Existential Quantifier

$(\exists x . \operatorname{Smiling}(x)) \rightarrow(\exists y$. WearingHat(y))

The Existential Quantifier

$(\exists x . \operatorname{Smiling}(x)) \rightarrow(\exists y$. WearingHat(y))

The Existential Quantifier

$(\exists x . \operatorname{Smiling}(x)) \rightarrow(\exists y$. WearingHat $(y))$

The Existential Quantifier

Is this part of the statement true or false?
$(\exists x . S m i l i n g(x)) \rightarrow(\exists y$. WearingHat(y))

The Existential Quantifier

Is this part of the statement true or false?
$(\exists x . \operatorname{Smiling}(x)) \rightarrow(\exists y$. WearingHat(y))

The Existential Quantifier

$(\exists x . \operatorname{Smiling}(x)) \rightarrow(\exists y$. WearingHat $(y))$

The Existential Quantifier

$(\exists x . S m i l i n g(x)) \rightarrow(\exists y$. WearingHat $(y))$

Fun with Edge Cases

$\exists x . \operatorname{Smiling}(x)$

Fun with Edge Cases

Existentially-quantified statements are false in an empty world, since nothing exists, period!
$\exists x . S m i l i n g(x)$

Some Technical Details

Variables and Quantifiers

- Each quantifier has two parts:
- the variable that is introduced, and
- the statement that's being quantified.
- The variable introduced is scoped just to the statement being quantified.
$(\exists x . \operatorname{Loves}(Y o u, x)) \wedge(\exists y . \operatorname{Loves}(y, Y o u))$

Variables and Quantifiers

- Each quantifier has two parts:
- the variable that is introduced, and
- the statement that's being quantified.
- The variable introduced is scoped just to the statement being quantified.
$(\exists x . \operatorname{Loves}(Y o u, x)) \wedge(\exists y . \operatorname{Loves}(y, Y o u))$

The variable x just lives here.

The variable y just lives here.

Variables and Quantifiers

- Each quantifier has two parts:
- the variable that is introduced, and
- the statement that's being quantified.
- The variable introduced is scoped just to the statement being quantified.
$(\exists x . \operatorname{Loves}(Y o u, x)) \wedge(\exists y . \operatorname{Loves}(y, Y o u))$

Variables and Quantifiers

- Each quantifier has two parts:
- the variable that is introduced, and
- the statement that's being quantified.
- The variable introduced is scoped just to the statement being quantified.
$(\exists x . \operatorname{Loves}(Y o u, x)) \wedge(\exists x . \operatorname{Loves}(x, Y o u))$

Variables and Quantifiers

- Each quantifier has two parts:
- the variable that is introduced, and
- the statement that's being quantified.
- The variable introduced is scoped just to the statement being quantified.
$(\exists x . \operatorname{Loves}(Y o u, x)) \wedge(\exists x . \operatorname{Loves}(x, Y o u))$

The variable x just lives here.

A different variable, also named x, just lives here.

Operator Precedence (Again)

- When writing out a formula in first-order logic, quantifiers have precedence just below \neg.
- The statement

$$
\exists x . P(x) \wedge R(x) \wedge Q(x)
$$

is parsed like this:

$$
\triangle \quad(\exists x . P(x)) \wedge(R(x) \wedge Q(x))
$$

- This is syntactically invalid because the variable x is out of scope in the back half of the formula.
- To ensure that x is properly quantified, explicitly put parentheses around the region you want to quantify:

$$
\exists x .(P(x) \wedge R(x) \wedge Q(x))
$$

"For any natural number n, n is even if and only if n^{2} is even"
"For any natural number n, n is even if and only if n^{2} is even"
$\forall n .\left(n \in \mathbb{N} \rightarrow\left(\operatorname{Even}(n) \leftrightarrow \operatorname{Even}\left(n^{2}\right)\right)\right)$

"For any natural number n,

 n is even if and only if n^{2} is even"
$\forall n .\left(n \in \mathbb{N} \rightarrow\left(\operatorname{Even}(n) \leftrightarrow \operatorname{Even}\left(n^{2}\right)\right)\right)$

\forall is the universal quantifier and says "for any choice of n, the following is true."

The Universal Quantifier

- A statement of the form

$\forall x$. some-formula

is true if, for every choice of x, the statement some-formula is true when x is plugged into it.

- Examples:
\forall. $($ Puppy $(p) \rightarrow$ Cute $(p))$
$\forall a$. (EatsPlants(a) v EatsAnimals(a))
Tallest(SultanKösen) \rightarrow
$\forall x$. (SultanKösen $\neq x \rightarrow$ ShorterThan(x, SultanKösen))

The Universal Quantifier

$\forall x . \operatorname{Smiling}(x)$

The Universal Quantifier

$\forall x . \operatorname{Smiling}(x)$

The Universal Quantifier

Since Smiling(x) is true for every choice of x, this statement evaluates to true.
$\forall x . \operatorname{Smiling}(x)$

The Universal Quantifier

Since Smiling (x) is true for every choice of x, this statement evaluates to true.
$\forall x . \operatorname{Smiling}(x)$

The Universal Quantifier

$\forall x . \operatorname{Smiling}(x)$

The Universal Quantifier

$\forall x . \operatorname{Smiling}(x)$

The Universal Quantifier

The Universal Quantifier

The Universal Quantifier

Since Smiling(x) is false for this choice x, this statement evaluates to false.

The Universal Quantifier

Since Smiling(x) is false for this choice x, this statement evaluates to false.

Question: In this world, is the first-order logic

 statement below true or false?Respond at pollev.com/zhenglian740

$(\forall x . \operatorname{Smiling}(x)) \rightarrow(\forall y$. WearingHat $(y))$

The Universal Quantifier

$(\forall x . S m i l i n g(x)) \rightarrow(\forall y$. WearingHat $(y))$

The Universal Quantifier

Is this part of the statement true or false?
$(\forall x$. Smiling $(x)) \rightarrow(\forall y$. WearingHat $(y))$

The Universal Quantifier

Is this part of the statement true or false?
$(\forall x$. Smiling $(x)) \rightarrow(\forall y$. WearingHat $(y))$

The Universal Quantifier

Is this part of the statement true or false?
$(\forall x$. Smiling $(x)) \rightarrow(\forall y$. WearingHat $(y))$

The Universal Quantifier

Is this part of the statement true or false?
$(\forall x . S m i l i n g(x)) \rightarrow(\forall y$. WearingHat $(y))$

The Universal Quantifier

Is this overall statement true or false in this scenario?
$(\forall x$. Smiling $(x)) \rightarrow(\forall y$. WearingHat $(y))$

The Universal Quantifier

Is this overall statement true or false in this scenario?

$(\forall x . \operatorname{Smiling}(x)) \rightarrow(\forall y$. WearingHat $(y))$

Fun with Edge Cases

$\forall x . \operatorname{Smiling}(x)$

Fun with Edge Cases

Universally-quantified statements are said to be vacuously true in empty worlds.
$\forall x . S m i l i n g(x)$

Let's take a quick break!

Translating into First-Order Logic

Translating Into Logic

- First-order logic is an excellent tool for manipulating definitions and theorems to learn more about them.
- Need to take a negation? Translate your statement into FOL, negate it, then translate it back.
- Want to prove something by contrapositive? Translate your implication into FOL, take the contrapositive, then translate it back.

Translating Into Logic

- When translating from English into firstorder logic, we recommend that you

$$
\begin{aligned}
& \text { think of first-order logic as a } \\
& \text { mathematical programming } \\
& \text { language. }
\end{aligned}
$$

- Your goal is to learn how to combine basic concepts (quantifiers, connectives, etc.) together in ways that say what you mean.

Using the predicates

- Smiling(x), which states that x is smiling, and
- WearingHat(x), which states that x is wearing a hat, write a sentence in first-order logic that says

some smiling person wears a hat.

Try it yourself: Give this your best shot - it's okay if you're not sure!

Respond at pollev.com/zhenglian740
"Some smiling person wears a hat."
$\exists x .(S m i l i n g(x) \wedge$ WearingHat(x))
$\exists x .(S m i l i n g(x) \rightarrow$ WearingHat $(x))$

"Some smiling person wears a hat."
$\exists x$. (Smiling $(x) \wedge$ WearingHat(x))
$\exists x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Some smiling person wears a hat."
$\exists x$. (Smiling $(x) \wedge$ WearingHat(x))
$\exists x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Some smiling person wears a hat." True
$\exists x$. (Smiling $(x) \wedge$ WearingHat(x))
$\exists x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Some smiling person wears a hat." True
$\exists x$. (Smiling $(x) \wedge$ WearingHat(x))
$\exists x .(S m i l i n g(x) \rightarrow$ WearingHat $(x))$

"Some smiling person wears a hat." True
$\exists x$. (Smiling $(x) \wedge$ WearingHat(x)) True $\exists x .(S m i l i n g(x) \rightarrow$ WearingHat $(x))$

"Some smiling person wears a hat." True
$\exists x$. (Smiling(x) ^ WearingHat(x)) True $\exists x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Some smiling person wears a hat." True
$\exists x$. (Smiling(x) ^ WearingHat(x)) True
$\exists x .($ Smiling $(x) \rightarrow$ WearingHat $(x)) \quad$ True

"Some smiling person wears a hat." True
$\exists x$. (Smiling(x) ^ WearingHat(x)) True
$\exists x .($ Smiling $(x) \rightarrow$ WearingHat $(x)) \quad$ True
"Some smiling person wears a hat."
$\exists x .(S m i l i n g(x) \wedge$ WearingHat(x))
$\exists x .(S m i l i n g(x) \rightarrow$ WearingHat(x))

"Some smiling person wears a hat."
$\exists x$. (Smiling $(x) \wedge$ WearingHat(x))
$\exists x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Some smiling person wears a hat."
$\exists x$. (Smiling $(x) \wedge$ WearingHat(x))
$\exists x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Some smiling person wears a hat." False
$\exists x$. (Smiling $(x) \wedge$ WearingHat(x))
$\exists x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Some smiling person wears a hat." False
$\exists x$. (Smiling $(x) \wedge$ WearingHat(x))
$\exists x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Some smiling person wears a hat." False
$\exists x$. (Smiling $(x) \wedge$ WearingHat(x)) False $\exists x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Some smiling person wears a hat." False
$\exists x$. (Smiling $(x) \wedge$ WearingHat(x)) False
$\exists x .(S m i l i n g(x) \rightarrow$ WearingHat $(x)) \quad$ True

"Some smiling person wears a hat." False
$\exists x$. (Smiling $(x) \wedge$ WearingHat(x)) False
$\exists x .($ Smiling $(x) \rightarrow$ WearingHat $(x)) \quad$ True

"Some smiling person wears a hat." False
$\exists x$. (Smiling $(x) \wedge$ WearingHat(x)) False
$\exists x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$ True

"Some P is a $Q "$

translates as

ヨx. (P(x) ^ Q(x))

Useful Intuition:

Existentially-quantified statements are false unless there's a positive example.

ヨx. (P(x) ^ Q(x))

If x is an example, it must have property P on top of property Q.

Using the predicates

- Smiling(x), which states that x is smiling, and
- WearingHat(x), which states that x is wearing a hat, write a sentence in first-order logic that says

every smiling person wears a hat.

Try it yourself: Give this your best shot - it's okay if you're not sure!

Respond at pollev.com/zhenglian740
"Every smiling person wears a hat."
$\forall x$. (Smiling $(x) \wedge$ WearingHat $(x))$
$\forall x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Every smiling person wears a hat."
$\forall x .(S m i l i n g(x) \wedge$ WearingHat(x)) $\forall x .(S m i l i n g(x) \rightarrow$ WearingHat $(x))$

"Every smiling person wears a hat." True $\forall x$. (Smiling $(x) \wedge$ WearingHat(x)) $\forall x .(S m i l i n g(x) \rightarrow$ WearingHat $(x))$

"Every smiling person wears a hat." True $\forall x$. (Smiling $(x) \wedge$ WearingHat(x)) True $\forall x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Every smiling person wears a hat." True $\forall x$. (Smiling(x) ^ WearingHat(x)) True $\forall x .(S m i l i n g(x) \rightarrow$ WearingHat $(x)) \quad$ True

"Every smiling person wears a hat." True $\forall x$. (Smiling(x) ^ WearingHat(x)) True $\forall x .(S m i l i n g(x) \rightarrow$ WearingHat $(x)) \quad$ True
"Every smiling person wears a hat."
$\forall x$. (Smiling $(x) \wedge$ WearingHat $(x))$
$\forall x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Every smiling person wears a hat." $\forall x$. (Smiling $(x) \wedge$ WearingHat(x)) $\forall x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Every smiling person wears a hat." True $\forall x$. (Smiling $(x) \wedge$ WearingHat $(x))$ $\forall x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Every smiling person wears a hat." True $\forall x$. (Smiling $(x) \wedge$ WearingHat(x)) False $\forall x .($ Smiling $(x) \rightarrow$ WearingHat $(x))$

"Every smiling person wears a hat." True $\forall \chi$. (Smiling(x) ^ WearingHat(x)) False $\forall x .(\operatorname{Smiling}(x) \rightarrow$ WearingHat $(x)) \quad$ True

"Every smiling person wears a hat." True $\forall x$. (Smiling $(x) \wedge$ WearingHat(x)) False $\forall x .(S m i l i n g(x) \rightarrow$ WearingHat $(x)) \quad$ True

"Every smiling person wears a hat." True $\forall x$. (Smiling (x) ^ WearingHat (x)) False $\forall x .($ Smiling $(x) \rightarrow$ WearingHat $(x)) \quad$ True

"All P's are Q's"

translates as
$\forall x .(P(x) \rightarrow Q(x))$

Useful Intuition:

Universally-quantified statements are true unless there's a counterexample.

$\forall x .(P(x) \rightarrow Q(x))$

If x is a counterexample, it must have property P but not have property Q.

Good Pairings

- The \forall quantifier usually is paired with \rightarrow.

$$
\forall x .(P(x) \rightarrow Q(x))
$$

- The \exists quantifier usually is paired with \wedge.

$$
\exists x .(P(x) \wedge Q(x))
$$

- In the case of \forall, the \rightarrow connective prevents the statement from being false when speaking about some object you don't care about.
- In the case of \exists, the \wedge connective prevents the statement from being true when speaking about some object you don't care about.

Proofwriting Workshop

An Incorrect Set Theory Proof

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.
\triangle Incorrect! \triangle Proof: Consider arbitrary sets A, B, and C where $C \subseteq A \cup B$.

This means that every element of C is in either A or B. If all elements of C are in A, then $C \subseteq A$. Alternately, if everything in C is in B, then $C \subseteq B$. In either case, everything inside of C has to be contained in at least one of these sets, so the theorem is true.

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.
\triangle Incorrect! \triangle Proof: Consider arbitrary sets A, B, and C where $C \subseteq A \cup B$.
This means that every element of C is in either A or B. If all elements of C are in A, then $C \subseteq A$. Alternately, if everything in C is in B, then $C \subseteq B$. In either case, everything inside of C has to be contained in at least one of these sets, so the theorem is true.

This is just repeating definitions and not making specific claims about specific variables.

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.
\triangle Incorrect! \triangle Proof: Consider arbitrary sets A, B, and C where $C \subseteq A \cup B$.

This means that every element of C is in either A or B. If all elements of C are in A, then $C \subseteq A$. Alternately, if everything in C is in B, then $C \subseteq B$. In either case, everything inside of C has to be contained in at least one of these sets, so the theorem is true.

Why is this bad?

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.
\triangle Incorrect! \triangle Proof: Consider arbitrary sets A, B, and C where $C \subseteq A \cup B$.

This means that every element of C is in either A or B. If all elements of C are in A, then $C \subseteq A$. Alternately, if everything in C is in B, then $C \subseteq B$. In either case, everything inside of C has to be contained in at least one of these sets, so the theorem is true.

While this claim is true, it does not imply the theorem is true. In fact, this theorem is actually false.

Let's Draw Some Pictures!

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.

Let's Draw Some Pictures!

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.

Let's Draw Some Pictures!

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.

Let's Draw Some Pictures!

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.

Let's Draw Some Pictures!

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.

Recall the intuition of a subset being "something I can circle"

Let's Draw Some Pictures!

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.

Recall the intuition of a subset being "something I can circle"

So $\mathbf{C} \subseteq A$ would mean that C is something I can circle in this region.

A

Let's Draw Some Pictures!

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.

Recall the intuition of a subset being "something I can circle"

Likewise, $\mathbf{C} \subseteq \mathrm{B}$ would mean that C is something I can circle in this region.

Let's Draw Some Pictures!

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.

Let's Draw Some Pictures!

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.

But when I look at $A \cup B$, I can draw C as a circle containing elements from both A and B !

Let's Draw Some Pictures!

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.

But when I look at $A \cup B$, I can draw C as a circle containing elements from both A and B !

Let's Draw Some Pictures!

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.

Using this visual intuition, come up with a choice of sets A, B, and C that show this claim is false.
Respond at pollev.com/zhenglian740

Proofs vs. Disproofs

- A proof is an argument that explains why some theorem is true.
- A disproof is an argument that explains why some claim is false.
- You've seen lots of examples of proofs. What does a disproof look like?

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.
Disproof: We will show that there are sets A, B, and C where $C \subseteq A \cup B$, but $C \& A$ and $C \& B$.

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.
Disproof: We will show that there are sets A, B, and C where $C \subseteq A \cup B$, but $C \not \subset A$ and $C \not \subset B$. Consider the sets $A=\{1\}$

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.
Disproof: We will show that there are sets A, B, and C where $C \subseteq A \cup B$, but $C \not \subset A$ and $C \not \subset B$. Consider the sets $A=\{1\}, B=\{2\}$

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.
Disproof: We will show that there are sets A, B, and C where $C \subseteq A \cup B$, but $C \notin A$ and $C \notin B$. Consider the sets $A=\{1\}, B=\{2\}$, and $C=\{1,2\}$.

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.
Disproof: We will show that there are sets A, B, and C where $C \subseteq A \cup B$, but $C \not \subset A$ and $C \not \subset B$. Consider the sets $A=\{1\}, B=\{2\}$, and $C=\{1,2\}$. Now notice that $\{1,2\} \subseteq A \cup B$ so $C \subseteq A \cup B$

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.
Disproof: We will show that there are sets A, B, and C where $C \subseteq A \cup B$, but $C \not \subset A$ and $C \nsubseteq B$. Consider the sets $A=\{1\}, B=\{2\}$, and $C=\{1,2\}$. Now notice that $\{1,2\} \subseteq A \cup B$ so $C \subseteq A \cup B$, but $C \& A$ because $2 \in C$ but $2 \notin A$

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.
Disproof: We will show that there are sets A, B, and C where $C \subseteq A \cup B$, but $C \notin A$ and $C \notin B$. Consider the sets $A=\{1\}, B=\{2\}$, and $C=\{1,2\}$. Now notice that $\{1,2\} \subseteq A \cup B$ so $C \subseteq A \cup B$, but $C \notin A$ because $2 \in C$ but $2 \notin A$, and $C \& B$ because $1 \in C$ but $1 \notin B$.

Claim: If A, B, and C are sets and $C \subseteq A \cup B$, then $C \subseteq A$ or $C \subseteq B$.
Disproof: We will show that there are sets A, B, and C where $C \subseteq A \cup B$, but $C \notin A$ and $C \notin B$. Consider the sets $A=\{1\}, B=\{2\}$, and $C=\{1,2\}$. Now notice that $\{1,2\} \subseteq A \cup B$ so $C \subseteq A \cup B$, but $C \nsubseteq A$ because $2 \in C$ but $2 \notin A$, and $C \& B$ because $1 \in C$ but $1 \notin B$.
Thus we've found a set C which is a subset of $A \cup B$ but is not a subset of either A or B, which is what we needed to show. ■

Proofwriting Advice

- Be very wary of proofs that speak generally about "all objects" of a particular type.
- As you've just seen, it's easy to accidentally prove a false statement at this level of detail.
- Making broad, high-level claims often indicates deeper logic errors or conceptual misunderstanding (like code smell but for proofs!)

Proofwriting Advice

A Very Good Idea: After you've written a draft of a proof, run through all of the points on the Proofwriting Checklist.

- This is a great exercise that you can do with a partner!

Proofs on Subsets

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then

 $C \subseteq A$ and $C \subseteq B$.Hold on, isn't this the claim we just disproved?

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then

 $C \subseteq A$ and $C \subseteq B$.Notice that that's an intersection, not a union! It turns out that this claim is actually true.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Recall the intuition of a subset being "something I can circle"

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Recall the intuition of a subset being "something I can circle"

When I look at $\mathrm{A} \cap \mathrm{B}$, any circle I can draw in this region can be found in both A and B.

Let's Draw Some Pictures!

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming
What We Need To Show

When confronted with a theorem to prove, the first step is to make sure you
understand where you're starting and where you're going.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets
- $\mathrm{C} \subseteq \mathrm{A} \cap \mathrm{B}$

What We Need To Show

- $C \subseteq A$ and $C \subseteq B$

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets
- $\mathrm{C} \subseteq \mathrm{A} \cap \mathrm{B}$

What We Need To Show

- $C \subseteq A$ and $C \subseteq B$

A great proofwriting strategy is to write down relevant definitions.
This gives you a better sense of what you need to prove and what tools you have at hand.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets

What We Need To Show

- $C \subseteq A$ and $C \subseteq B$
- $\mathrm{C} \subseteq \mathrm{A} \cap \mathrm{B}$

Before we start:

- What is the definition of subset?
- How do you prove that one set is a subset of another?
- If you know that one set is a subset of another, what can you conclude?

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets

What We Need To Show

- $C \subseteq A$ and $C \subseteq B$
- $C \subseteq A \cap B$

Definition: If S and T are sets, then $S \subseteq T$ when for every $x \in S$, we have $x \in T$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets
- $C \subseteq A \cap B$

What We Need To Show

- $C \subseteq A$ and $C \subseteq B$

Definition: If S and T are sets, then $S \subseteq T$ when for every $x \in S$, we have $x \in T$.

To prove that $S \subseteq T$:
Pick an arbitrary $x \in S$, then prove $x \in T$.
If you know that $S \subseteq T$:
If you have an $x \in S$, you can conclude $x \in T$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Definition: If S and T are sets, then $S \subseteq T$ when for every $x \in S$, we have $x \in T$.

To prove that $S \subseteq T$:
Pick an arbitrary $x \in S$, then prove $x \in T$.
If you know that $S \subseteq T$:
If you have an $x \in S$, you can conclude $x \in T$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

This reading of the definition is usually helpful for unpacking this

What We Need To Show

- $C \subseteq A$ and $C \subseteq B$

Definition: If S and T are sets, then $S \subseteq T$ when for every $x \in S$, we have $x \in T$.

To prove that $S \subseteq T$:
Pick an arbitrary $x \in S$, then prove $x \in T$.
you know that $S \subseteq T$:
If you have an $x \in S$, you can conclude $x \in T$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets
- $\mathrm{C} \subseteq \mathrm{A} \cap \mathrm{B}$
- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets
- $\mathrm{C} \subseteq \mathrm{A} \cap \mathrm{B}$

> Our Tools

- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$

What We Need To Show

- $C \subseteq A$ and $C \subseteq B$

How can we apply this general template to our specific problem?

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets
- $C \subseteq A \cap B$

> Our Tools

- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$

What We Need To Show

- $C \subseteq A$ and $C \subseteq B$
- Pick an $x \in C$, show that x $\in A$
- Pick an $x \in C$, show that x $\in B$

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets
- $C \subseteq A \cap B$

> Our Tools

- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$

What We Need To Show

- $C \subseteq A$ and $C \subseteq B$
- Pick an $x \in C$, show that x $\in A$
- Pick an $x \in C$, show that x $\in B$

Now we know that ultimately, we're going to have to do these two things. Let's see what tools we have that can get us here!

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets
- $\mathrm{C} \subseteq \mathrm{A} \cap \mathrm{B}$

> Our Tools

- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$

What We Need To Show

- $C \subseteq A$ and $C \subseteq B$
- Pick an $x \in C$, show that x $\in A$
- Pick an $x \in C$, show that x $\in B$

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets
- $\mathrm{C} \subseteq \mathrm{A} \cap \mathrm{B}$

This reading of the definition is usually helpful for unpacking this column!

Definition: If S and T ard sets, then $S \subseteq T$ when for every $x \in S$, whave $x \in T$.

Pick an arbitrary $x \in S$, th n prove $x \in T$.
If you know that $S \subseteq T$:
If you have an $x \in S$, you can conclude $x \in T$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then

 $C \subseteq A$ and $C \subseteq B$.What We're Assuming

- A, B, and C are sets
- $\mathrm{C} \subseteq \mathrm{A} \cap \mathrm{B}$

> Our Tools

- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$

What We Need To Show

- $C \subseteq A$ and $C \subseteq B$
- Pick an $x \in C$, show that x $\in A$
- Pick an $x \in C$, show that x $\in B$

Before we continue:

- What is the definition of set intersection?

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets
- $\mathrm{C} \subseteq \mathrm{A} \cap \mathrm{B}$

What We Need To Show

- $C \subseteq A$ and $C \subseteq B$
- Pick an $x \in C$, show that x $\in A$

Definition: The set $S \cap T$ is the set where, for any χ : $x \in S \cap T \quad$ when $\quad x \in S$ and $x \in T$

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

What We Need To Show

- A, B, and C are sets
- $\mathrm{C} \subseteq \mathrm{A} \cap \mathrm{B}$

Definition: The set $S \cap T$ is the set where, for any x :

$$
x \in S \cap T \quad \text { when } \quad x \in S \text { and } x \in T
$$

To prove that $x \in S \cap T$:
Prove both that $x \in S$ and that $x \in T$.
If you know that $x \in S \cap T$: You can conclude both that $x \in S$ and that $x \in T$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets
- $C \subseteq A \cap B$

```
Definition: The set S \capT is the set where, for any }x\mathrm{ : \(x \in S \cap T \quad\) when \(\quad x \in S\) and \(x \in T\)
To prove that \(x \in S \cap T\) : Prove both that \(x \in S\) ad that \(x \in T\).
If you know that \(x \in S \cap T\) : You can conclude both that \(x \in S\) and that \(x \in T\).
```

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets
- $\mathrm{C} \subseteq \mathrm{A} \cap \mathrm{B}$
Our Tools
- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$.
- If you know that $S \subseteq T$ and you have an $x \in S$, you can conclude $x \in T$.
- If you know that $x \in S \cap T$, we can conclude that $x \in S$ and $x \in T$.

What We Need To Show

- $C \subseteq A$ and $C \subseteq B$
- Pick an $x \in C$, show that x $\in A$
- Pick an $x \in C$, show that x $\in B$

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

What We're Assuming

- A, B, and C are sets
- $\mathrm{C} \subseteq \mathrm{A} \cap \mathrm{B}$
Our Tools
- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$.
- If you know that $S \subseteq T$ and you have an $x \in S$, you can conclude $x \in T$.
- If you know that $x \in S \cap T$, we can conclude that $x \in S$ and $x \in T$.

What We Need To Show

- $C \subseteq A$ and $C \subseteq B$
- Pick an $x \in C$, show that x $\in A$
- Pick an $x \in C$, show that x $\in B$

Let's go and try and do the proof with what we've got here!

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Rough Outline

- Assume $C \subseteq A \cap B$

Relevant Definitions

- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
- If you know that $S \subseteq T$ and you have an $x \in S$, you can conclude $x \in T$.
- If you know that $x \in S \cap T$, we can conclude that $x \in S$ and $x \in T$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Rough Outline

- Assume $C \subseteq A \cap B$
- Proving $C \subseteq A$
- Pick an $x \in C$
- Conclude $x \in A$

Relevant Definitions

- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
- If you know that $S \subseteq T$ and you have an $x \in S$, you can conclude $x \in T$.
- If you know that $x \in S \cap T$, we can conclude that $x \in S$ and $x \in T$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Rough Outline

- Assume $C \subseteq A \cap B$
- Proving $C \subseteq A$
- Pick an $x \in C$

Relevant Definitions

- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
- If you know that $S \subseteq T$ and you have an $x \in S$, you can conclude $x \in T$.
- If you know that $x \in S \cap T$, we can conclude that $x \in S$ and $x \in T$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Rough Outline

- Assume $C \subseteq A \cap B$
- Proving $C \subseteq A$
- Pick an $x \in C$
- $x \in A \cap B$
- Conclude $x \in A$

Relevant Definitions

- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
- If you know that $S \subseteq T$ and you have an $x \in S$, you can conclude $x \in T$.
- If you know that $x \in S \cap T$, we can conclude that $x \in S$ and $x \in T$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Rough Outline

- Assume $C \subseteq A \cap B$
- Proving $C \subseteq A$
- Pick an $x \in C$
- $x \in A \cap B$
- Conclude $x \in A$

Relevant Definitions

- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
- If you know that $S \subseteq T$ and you have an $x \in S$, you can conclude $x \in T$.
- If you know that $x \in S \cap T$, we can conclude that $x \in S$ and $x \in T$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Rough Outline

- Assume $C \subseteq A \cap B$
- Proving C $\subseteq A$
- Pick an $x \in C$
- $x \in A \cap B$
- $x \in A$ and $x \in B$
- Conclude $x \in A$

Relevant Definitions

- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
- If you know that $S \subseteq T$ and you have an $x \in S$, you can conclude $x \in T$.
- If you know that $x \in S \cap T$, we can conclude that $x \in S$ and $x \in T$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Rough Outline

- Assume $C \subseteq A \cap B$
- Proving $C \subseteq A$
- Pick an $x \in C$
- $x \in A \cap B$
- $x \in A$ and $x \in B$
- Conclude $x \in A$

Relevant Definitions

- In general to show that $S \subseteq T$, pick an arbitrary $x \in S$, show that $x \in T$
- If you know that $S \subseteq T$ and you have an $x \in S$, you can conclude $x \in T$.
- If you know that $x \in S \cap T$, we can conclude that $x \in S$ and $x \in T$.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Rough Outline

- Assume $C \subseteq A \cap B$
- Proving $C \subseteq A$
- Pick an $x \in C$
- $x \in A \cap B$
- $x \in A$ and $x \in B$
- Conclude $x \in A$

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Rough Outline

- Assume $C \subseteq A \cap B$
- Proving $C \subseteq A$
- Pick an $x \in C$
- $x \in A \cap B$
- $x \in A$ and $x \in B$
- Conclude $x \in A$

We also need to prove that $C \subseteq B$.

Notice that if you take the outline here and literally swap the variable A for the variable B, you get a working proof.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Rough Outline

- Assume $C \subseteq B \cap A$
- Proving $C \subseteq B$
- Pick an $x \in C$
- $x \in B \cap A$
- $x \in B$ and $x \in A$
- Conclude $x \in B$

In a case like this where your proof would have two completely symmetric branches, it's fine to write up just one and say
"by symmetry, [the other branch]
is also true."

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Rough Outline

- Assume $C \subseteq A \cap B$
- Proving $C \subseteq A$
- Pick an $x \in C$
- $x \in A \cap B$
- $x \in A$ and $x \in B$
- Conclude $x \in A$

Try it yourself: Take a few minutes and write up a proof of the theorem using this outline.

Then share your proof with your neighbors and critique each other!

Respond at pollev.com/zhenglian740

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Proof: Let A, B, and C be arbitrary sets where $C \subseteq A \cap B$. We need to show that $C \subseteq A$ and $C \subseteq B$. Because the roles of A and B in this proof are symmetric, we can just prove that $C \subseteq A$.
Choose any element $x \in C$. Since $C \subseteq A \cap B$, we know that $x \in A \cap B$. This tells us that $x \in A$ and $x \in B$. In particular, this means that $x \in A$, thus completing the proof.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Proof: Let A, B, and C be arbitrary sets where $C \subseteq A \cap B$. We need to show that $C \subseteq A$ and $C \subseteq B$. Because the roles of A and B in this proof are

Are you clearly stating what you're assuming and what you're trying to prove?
completing the proof.

Theorem: If A, B, and C are sets and $C \subseteq A \cap B$, then $C \subseteq A$ and $C \subseteq B$.

Proof: Let A, B, and C be arbitrary sets where $C \subseteq A \cap B$. We need to show that $C \subseteq A$ and $C \subseteq B$. Because the roles of A and B in this proof are symmetric, we can just prove that $C \subseteq A$.
Choose any element $x \in C$. Since $C \subseteq A \cap B$, we know that $x \in A \cap B$. This tells us that $x \in A$ and $x \in B$. Tn narticular this means that $x \in A$ thus

Are you making specific claims about specific variables? Your proof should NOT have statements of the form "every element of C ".

Theorem: If $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} are sets and $C \subseteq A \cap B$, then

 $C \subseteq A$ and $C \subseteq B$.Proof: Let A, B, and C be arbitrary sets where $C \subseteq A \cap B$. We need to show that $C \subseteq A$ and $C \subseteq B$. Because the roles of A and B in this proof are symmetric, we can just prove that $C \subseteq A$.
Choose any element $\boldsymbol{x} \in C$. Since $C \subseteq A \cap B$, we know that $x \in A \cap B$. This tells us that $x \in A$ and

Are all variables properly introduced and scoped? You should be able to point at every variable and say that it is either:

1) an arbitrarily chosen value - owned by the reader
2) an existentially instantiated value - owned by no one
3) an explicitly chosen value - owned by you (the proof writer)

Next Time

- First-Order Translations
- How do we translate from English into first-order logic?
- Quantifier Orderings
- How do you select the order of quantifiers in first-order logic formulas?
- Negating Formulas
- How do you mechanically determine the negation of a first-order formula?
- Expressing Uniqueness
- How do we say there's just one object of a certain type?

