
  

First-Order Logic
Part One



  

Recap from Last Time



  

Recap So Far

● A propositional variable is a variable that is 
either true or false.

● The propositional connectives are as follows:
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

Take out a sheet of paper!



  

What's the truth table for the → connective?



  

What's the negation of p → q?



  

New Stuff!



  

First-Order Logic



  

What is First-Order Logic?

● First-order logic is a logical system for 
reasoning about properties of objects.

● Augments the logical connectives from 
propositional logic with
● predicates that describe properties of 

objects,
● functions that map objects to one another, 

and
● quantifiers that allow us to reason about 

multiple objects.



  

Some Examples



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

These blue terms are called 
constant symbols. Unlike 

propositional variables, they refer to 
objects, not propositions.



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

The red things that look like function 
calls are called predicates. 
Predicates take objects as 

arguments and evaluate to true or 
false.



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)



  

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional 
connectives. Because each predicate evaluates to 

true or false, we can connect the truth values of 
predicates using normal propositional connectives.



  

Reasoning about Objects

● To reason about objects, first-order logic uses 
predicates.

● Examples:

Cute(Quokka)    

Cool(CS103 students)  
● Applying a predicate to arguments produces a 

proposition, which is either true or false.
● Typically, when you’re working in FOL, you’ll 

have a list of predicates, what they stand for, and 
how many arguments they take. It’ll be given 
separately from the formulas you write.



  

First-Order Sentences

● Sentences in first-order logic can be 
constructed from predicates applied to objects:

Cute(a) → Dikdik(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)

x < 8 → x < 137

The less-than sign is just 
another predicate. Binary 
predicates are sometimes 

written in infix notation this 
way.

Numbers are not “built in” to 
first-order logic. They’re 

constant symbols just like 
“You” and “a” above.



  

Equality

● First-order logic is equipped with a special 
predicate = that says whether two objects are 
equal to one another.

● Equality is a part of first-order logic, just as → 
and ¬ are.

● Examples:

MilesMorales = SpiderMan

MorningStar = EveningStar
● Equality can only be applied to objects; to 

state that two propositions are equal, use ↔.



  

Let's see some more examples.



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are functions. 
Functions take objects as input and 

produce objects as output.



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



  

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ 
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))



  

Functions

● First-order logic allows functions that return 
objects associated with other objects.

● Examples:

ColorOf(Money)

MedianOf(x, y, z)

x + y
● As with predicates, functions can take in any 

number of arguments, but always return a single 
value.

● Functions evaluate to objects, not propositions.



  

Objects and Predicates

● When working in first-order logic, be 
careful to keep objects (actual things) 
and propositions (true or false) separate.

● You cannot apply connectives to objects:

        ⚠          Venus → TheSun                  ⚠
● You cannot apply functions to 

propositions:

 ⚠ StarOf(IsRed(Sun) ∧ IsGreen(Mars)) ⚠
● Ever get confused? Just ask! 



  

The Type-Checking Table

… operate on ... … and produce

Connectives
(↔, ∧, etc.) …

Predicates
(=, etc.) …

Functions …

propositions a proposition

a propositionobjects

objects an object



  

One last (and major) change



  

Some spider is radioactive.



  

Some spider is radioactive.

∃s. (Spider(s) ∧ Radioactive(s))



  

∃ is the existential quantifier 
and says “for some choice of s, the 

following is true.”

Some spider is radioactive.

∃s. (Spider(s) ∧ Radioactive(s))



  

The Existential Quantifier

● A statement of the form

∃x. some-formula

is true if there exists a choice of x where 
some-formula is true when that x is 
plugged into it.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃w. Will(w)) → (∃x. Way(x))



  

The Existential Quantifier

∃x. Smiling(x)



  

The Existential Quantifier

∃x. Smiling(x)



  

The Existential Quantifier

∃x. Smiling(x)



  

The Existential Quantifier

∃x. Smiling(x)



  

The Existential Quantifier

∃x. Smiling(x)



  

The Existential Quantifier

∃x. Smiling(x)



  

The Existential Quantifier

∃x. Smiling(x)



  

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) 
is true for some 
choice of x, this 

statement 
evaluates to true.



  

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) 
is true for some 
choice of x, this 

statement 
evaluates to true.



  

The Existential Quantifier

∃x. Smiling(x)



  

The Existential Quantifier

∃x. Smiling(x)



  

The Existential Quantifier

∃x. Smiling(x)



  

The Existential Quantifier

∃x. Smiling(x)



  

The Existential Quantifier

∃x. Smiling(x)



  

The Existential Quantifier

∃x. Smiling(x)



  

The Existential Quantifier

∃x. Smiling(x)



  

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is 
not true for any 
choice of x, this 

statement evaluates 
to false.



  

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is 
not true for any 
choice of x, this 

statement evaluates 
to false.



  

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Question: In this world, is the first-order logic 
statement below true or false?

Respond at pollev.com/zhenglian740



  

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))



 

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the 
statement true or 

false?



 

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the 
statement true or 

false?



  

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the 
statement true or 

false?



  

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the 
statement true or 

false?



  

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall 
statement true or 

false?



  

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall 
statement true or 

false?



  ∃x. Smiling(x)

Fun with Edge Cases



  ∃x. Smiling(x)

Fun with Edge Cases

Existentially-quantified 
statements are false in an 

empty world, since nothing 
exists, period!



  

Some Technical Details



  

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to 
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))



  

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to 
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))

The variable x just 
lives here.

The variable y just 
lives here.



  

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to 
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))



  

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to 
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃x. Loves(x, You))



  

Variables and Quantifiers

● Each quantifier has two parts:
● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to 
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃x. Loves(x, You))

The variable x just 
lives here.

A different variable, also 
named x, just lives here.



  

Operator Precedence (Again)

● When writing out a formula in first-order logic, 
quantifiers have precedence just below ¬.

● The statement

∃x. P(x) ∧ R(x) ∧ Q(x)

is parsed like this:

        ⚠ (∃x. P(x))  ∧  (R(x) ∧ Q(x))        ⚠
● This is syntactically invalid because the variable x is 

out of scope in the back half of the formula.

● To ensure that x is properly quantified, explicitly put 
parentheses around the region you want to quantify:

∃x. (P(x) ∧ R(x) ∧ Q(x))



  

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 



  

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 



  

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 

∀ is the universal quantifier and 
says “for any choice of n, the following is 

true.”



  

The Universal Quantifier

● A statement of the form

∀x. some-formula

is true if, for every choice of x, the statement 
some-formula is true when x is plugged into it.

● Examples:

∀p. (Puppy(p) → Cute(p))

∀a. (EatsPlants(a) ∨ EatsAnimals(a))

Tallest(SultanKösen) →
∀x. (SultanKösen ≠ x → ShorterThan(x, SultanKösen))



  

The Universal Quantifier

∀x. Smiling(x)



  

The Universal Quantifier

∀x. Smiling(x)



  

The Universal Quantifier

∀x. Smiling(x)



  

The Universal Quantifier

∀x. Smiling(x)



  

The Universal Quantifier

∀x. Smiling(x)



  

The Universal Quantifier

∀x. Smiling(x)



  

The Universal Quantifier

∀x. Smiling(x)



  

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) 
is true for every 
choice of x, this 

statement 
evaluates to true.



  

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) 
is true for every 
choice of x, this 

statement 
evaluates to true.



  

The Universal Quantifier

∀x. Smiling(x)



  

The Universal Quantifier

∀x. Smiling(x)



  

The Universal Quantifier

∀x. Smiling(x)



  

The Universal Quantifier

∀x. Smiling(x)



  

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is 
false for this choice 

x, this statement 
evaluates to false.



  

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is 
false for this choice 

x, this statement 
evaluates to false.



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Question: In this world, is the first-order logic 
statement below true or false?

Respond at pollev.com/zhenglian740



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the 
statement true or 

false?



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the 
statement true or 

false?



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the 
statement true or 

false?



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the 
statement true or 

false?



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall 
statement true or 

false in this 
scenario?



  

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall 
statement true or 

false in this 
scenario?



  ∀x. Smiling(x)

Fun with Edge Cases



  ∀x. Smiling(x)

Fun with Edge Cases

Universally-quantified 
statements are said to be 
vacuously true in empty 

worlds.



  

Let’s take a quick break!



  

Translating into First-Order Logic



  

Translating Into Logic

● First-order logic is an excellent tool for 
manipulating definitions and theorems to 
learn more about them.

● Need to take a negation? Translate your 
statement into FOL, negate it, then 
translate it back.

● Want to prove something by contrapositive? 
Translate your implication into FOL, take 
the contrapositive, then translate it back.



  

Translating Into Logic

● When translating from English into first-
order logic, we recommend that you

think of first-order logic as a 
mathematical programming 

language.
● Your goal is to learn how to combine 

basic concepts (quantifiers, connectives, 
etc.) together in ways that say what you 
mean.



  

Using the predicates

   - Smiling(x), which states that x is smiling, and
   - WearingHat(x), which states that x is wearing a hat,

write a sentence in first-order logic that says

some smiling person wears a hat.

Try it yourself: Give this your best shot – it’s okay 
if you’re not sure!  

Respond at pollev.com/zhenglian740



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.”



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.”



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.”



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” True



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” True



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” True

True



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” True

True



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” True

True

True



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” True

True

True

Concern: Intuitively, 
these people should 

be irrelevant.



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.”



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.”



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.”



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True



  

∃x. (Smiling(x) ∧ WearingHat(x))

∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True



  

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))



  

Useful Intuition: 
  

Existentially-quantified statements are 
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must have 
property P on top of property Q.



  

Using the predicates

   - Smiling(x), which states that x is smiling, and
   - WearingHat(x), which states that x is wearing a hat,

write a sentence in first-order logic that says

every smiling person wears a hat.

Try it yourself: Give this your best shot – it’s okay 
if you’re not sure!  

Respond at pollev.com/zhenglian740



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.”



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.”



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

True



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

True

True



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

True

True



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.”



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.”



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True



  

∀x. (Smiling(x) ∧ WearingHat(x))

∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True



  

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))



  

Useful Intuition:
 

Universally-quantified statements are true 
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it must 
have property P but not have 

property Q.



  

Good Pairings

● The ∀ quantifier usually is paired with →.

∀x. (P(x) → Q(x))
● The ∃ quantifier usually is paired with ∧.

∃x. (P(x) ∧ Q(x))
● In the case of ∀, the → connective prevents the 

statement from being false when speaking about some 
object you don't care about.

● In the case of ∃, the ∧ connective prevents the 
statement from being true when speaking about some 
object you don't care about.



  

Proofwriting Workshop



  

An Incorrect Set Theory Proof



  

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

 ⚠ Incorrect!  ⚠ Proof: Consider arbitrary sets A, 
B, and C where C ⊆ A ∪ B.

This means that every element of C is in either A 
or B. If all elements of C are in A, then C ⊆ A. 
Alternately, if everything in C is in B, then C ⊆ B. 
In either case, everything inside of C has to be 
contained in at least one of these sets, so the 
theorem is true.  ■



  

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

This is just repeating definitions and not making 
specific claims about specific variables. 

 ⚠ Incorrect!  ⚠ Proof: Consider arbitrary sets A, 
B, and C where C ⊆ A ∪ B.

This means that every element of C is in either A 
or B. If all elements of C are in A, then C ⊆ A. 
Alternately, if everything in C is in B, then C ⊆ B. 
In either case, everything inside of C has to be 
contained in at least one of these sets, so the 
theorem is true.  ■



  

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

 ⚠ Incorrect!  ⚠ Proof: Consider arbitrary sets A, 
B, and C where C ⊆ A ∪ B.

This means that every element of C is in either A 
or B. If all elements of C are in A, then C ⊆ A. 
Alternately, if everything in C is in B, then C ⊆ B. 
In either case, everything inside of C has to be 
contained in at least one of these sets, so the 
theorem is true.  ■

Why is this bad?



  

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

 ⚠ Incorrect!  ⚠ Proof: Consider arbitrary sets A, 
B, and C where C ⊆ A ∪ B.

This means that every element of C is in either A 
or B. If all elements of C are in A, then C ⊆ A. 
Alternately, if everything in C is in B, then C ⊆ B. 
In either case, everything inside of C has to be 
contained in at least one of these sets, so the 
theorem is true.  ■

While this claim is true, it does not imply the 
theorem is true. In fact, this theorem is actually 

false. 



  

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.



  

A

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.



  

A B

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.



  

A B

A ∪ B

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.



  

A B

A ∪ B

Recall the intuition of a subset 
being “something I can circle”

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.



  

Recall the intuition of a subset 
being “something I can circle”

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

A

So C ⊆ A would mean that C is 
something I can circle in this 

region. 

C



  

Recall the intuition of a subset 
being “something I can circle”

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

Likewise, C ⊆ B would 
mean that C is something I can 

circle in this region. 

B

C



  
A ∪ B

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.



  
A ∪ B

But when I look at A∪B, I can draw C as a circle 
containing elements from both A and B! 

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

C



  
A ∪ B

But when I look at A∪B, I can draw C as a circle 
containing elements from both A and B! 

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

Do you see why this circle is in 
neither A nor B? 

C



  
A ∪ B

Let’s Draw Some Pictures!
Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

C

Using this visual intuition, come up with 
a choice of sets A, B, and C that show this 

claim is false. 

Respond at pollev.com/zhenglian740



  

Proofs vs. Disproofs
● A proof is an argument that explains why 

some theorem is true.
● A disproof is an argument that explains 

why some claim is false.
● You’ve seen lots of examples of proofs. 

What does a disproof look like?



  

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.



  

Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊈ A and C ⊈ B.

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.



  

Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊈ A and C ⊈ B. Consider the 
sets A = {1}

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

A

1



  

Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊈ A and C ⊈ B. Consider the 
sets A = {1}, B = {2}

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

A

1

B

2



  

Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊈ A and C ⊈ B. Consider the 
sets A = {1}, B = {2}, and  C = {1, 2}.

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

A

1

B

2

C



  

Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊈ A and C ⊈ B. Consider the 
sets A = {1}, B = {2}, and  C = {1, 2}. Now notice that 
{1, 2} ⊆ A ∪ B so C ⊆ A ∪ B 

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

A

1

B

2

C



  

Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊈ A and C ⊈ B. Consider the 
sets A = {1}, B = {2}, and  C = {1, 2}. Now notice that 
{1, 2} ⊆ A ∪ B so C ⊆ A ∪ B, but C ⊈ A because 2 ∈ C 
but 2 ∉ A 

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

A

1

B

2

C



  

Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊈ A and C ⊈ B. Consider the 
sets A = {1}, B = {2}, and  C = {1, 2}. Now notice that 
{1, 2} ⊆ A ∪ B so C ⊆ A ∪ B, but C ⊈ A because 2 ∈ C 
but 2 ∉ A, and C ⊈ B because 1 ∈ C but 1 ∉ B.

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.

1

B

2

A

C



  

Disproof: We will show that there are sets A, B, and C
where C ⊆ A ∪ B, but C ⊈ A and C ⊈ B. Consider the 
sets A = {1}, B = {2}, and  C = {1, 2}. Now notice that 
{1, 2} ⊆ A ∪ B so C ⊆ A ∪ B, but C ⊈ A because 2 ∈ C 
but 2 ∉ A, and C ⊈ B because 1 ∈ C but 1 ∉ B. 

Thus we’ve found a set C which is a subset of A ∪ B but 
is not a subset of either A or B, which is what we needed 
to show. ■ 

Claim:  If A, B, and C are sets and C ⊆ A ∪ B, then C ⊆ A 
or C ⊆ B.



  

Proofwriting Advice

● Be very wary of proofs that speak generally 
about “all objects” of a particular type.
● As you’ve just seen, it’s easy to 

accidentally prove a false statement at 
this level of detail.

● Making broad, high-level claims often 
indicates deeper logic errors or 
conceptual misunderstanding (like code 
smell but for proofs!) 



  

Proofwriting Advice

A Very Good Idea: After you’ve 
written a draft of a proof, run through 
all of the points on the Proofwriting 
Checklist.
● This is a great exercise that you can 

do with a partner!



  

Proofs on Subsets



  

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.



  

Hold on, isn’t this the claim we just disproved?

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.



  

Notice that that’s an intersection, not a union! It turns out that this claim 
is actually true.

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.



  

Let’s Draw Some Pictures!
Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.



  

A

Let’s Draw Some Pictures!
Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.



  

A B

Let’s Draw Some Pictures!
Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.



  

A B

A ∩ B

Let’s Draw Some Pictures!
Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.



  

A B

A ∩ B

Let’s Draw Some Pictures!

Recall the intuition of a subset 
being “something I can circle”

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.



  

A B

A ∩ B

Let’s Draw Some Pictures!

Recall the intuition of a subset 
being “something I can circle”

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

When I look at A∩B, any circle I can draw in 
this region can be found in both A and B. 

C



  

A B

A ∩ B

Let’s Draw Some Pictures!
Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

This is a great visual intuition to 
see why the theorem is true. Now 

we have to drill down to the level of 
individual elements to write the 

proof.  

C



  

What We’re Assuming What We Need To Show

When confronted with a theorem to prove, the first step is to make sure you 
understand where you’re

starting and where you’re going. 

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

A great proofwriting strategy  is to write 
down relevant definitions. 
This gives you a better sense of what you 
need to prove and what tools you have at 

hand.    



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Before we start:
 - What is the definition of subset? 
 - How do you prove that one set is a subset of  another?
 - If you know that one set is a subset of  another, what 

can you conclude?



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Definition: If S and T are sets, then S ⊆ T when
for every x ∈ S, we have x ∈ T.

 

 



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Definition: If S and T are sets, then S ⊆ T when
for every x ∈ S, we have x ∈ T.

 

To prove that S ⊆ T:
    Pick an arbitrary x ∈ S, then prove x ∈ T.
 

If you know that S ⊆ T:
    If you have an x ∈ S, you can conclude x ∈ T.



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Definition: If S and T are sets, then S ⊆ T when
for every x ∈ S, we have x ∈ T.

 

To prove that S ⊆ T:
    Pick an arbitrary x ∈ S, then prove x ∈ T.
 

If you know that S ⊆ T:
    If you have an x ∈ S, you can conclude x ∈ T.



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Definition: If S and T are sets, then S ⊆ T when
for every x ∈ S, we have x ∈ T.

 

To prove that S ⊆ T:
    Pick an arbitrary x ∈ S, then prove x ∈ T.
 

If you know that S ⊆ T:
    If you have an x ∈ S, you can conclude x ∈ T.

This reading of the definition is 
usually helpful for unpacking this 

column!  



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Our Tools

● In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Our Tools

● In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

How can we apply this general 
template to our specific problem?



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B
● Pick an x ∈ C, show that x 

∈ A
● Pick an x ∈ C, show that x 

∈ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Our Tools

● In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B
● Pick an x ∈ C, show that x 

∈ A
● Pick an x ∈ C, show that x 

∈ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Our Tools

● In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

Now we know that ultimately, we’re going to have 
to do these two things. Let’s see what tools we 

have that can get us here! 



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B
● Pick an x ∈ C, show that x 

∈ A
● Pick an x ∈ C, show that x 

∈ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Our Tools

● In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B
● Pick an x ∈ C, show that x 

∈ A
● Pick an x ∈ C, show that x 

∈ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Our Tools

● In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

What We Need To Show

Definition: If S and T are sets, then S ⊆ T when
for every x ∈ S, we have x ∈ T.

 

To prove that S ⊆ T:
    Pick an arbitrary x ∈ S, then prove x ∈ T.
 

If you know that S ⊆ T:
    If you have an x ∈ S, you can conclude x ∈ T.

This reading of the definition is 
usually helpful for unpacking this 

column!  



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B
● Pick an x ∈ C, show that x 

∈ A
● Pick an x ∈ C, show that x 

∈ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Our Tools

● In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

Before we continue:
 - What is the definition of set intersection? 



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B
● Pick an x ∈ C, show that x 

∈ A
● Pick an x ∈ C, show that x 

∈ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Our Tools

● In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

Definition: The set S ∩ T is the set where, for any x:
x ∈ S ∩ T      when     x ∈ S and x ∈ T

 



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B
● Pick an x ∈ C, show that x 

∈ A
● Pick an x ∈ C, show that x 

∈ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Our Tools

● In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

Definition: The set S ∩ T is the set where, for any x:
x ∈ S ∩ T      when     x ∈ S and x ∈ T

 

To prove that x ∈ S ∩ T:
    Prove both that x ∈ S and that x ∈ T.
 

If you know that x ∈ S ∩ T:
    You can conclude both that x ∈ S and that x ∈ T.



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B
● Pick an x ∈ C, show that x 

∈ A
● Pick an x ∈ C, show that x 

∈ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

This is the one we want!

Our Tools

● In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T

Definition: The set S ∩ T is the set where, for any x:
x ∈ S ∩ T      when     x ∈ S and x ∈ T

 

To prove that x ∈ S ∩ T:
    Prove both that x ∈ S and that x ∈ T.
 

If you know that x ∈ S ∩ T:
    You can conclude both that x ∈ S and that x ∈ T.



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B
● Pick an x ∈ C, show that x 

∈ A
● Pick an x ∈ C, show that x 

∈ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Our Tools

● In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T.

● If you know that S ⊆ T and you 
have an x ∈ S, you can conclude 
x ∈ T.

● If you know that x ∈ S∩T, we can 
conclude that x ∈ S and x ∈ T.



  

What We’re Assuming What We Need To Show

● A, B, and C are sets
● C ⊆ A∩B

● C ⊆ A and C ⊆ B
● Pick an x ∈ C, show that x 

∈ A
● Pick an x ∈ C, show that x 

∈ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Our Tools

● In general to show that S ⊆ T, 
pick an arbitrary x ∈ S, show 
that x ∈ T.

● If you know that S ⊆ T and you 
have an x ∈ S, you can conclude 
x ∈ T.

● If you know that x ∈ S∩T, we can 
conclude that x ∈ S and x ∈ T.

Let’s go and try and do the proof with 
what we’ve got here!  



  

Rough Outline Relevant Definitions

● Assume C ⊆ A ∩ B

Proving C ⊆ A

Pick an x ∈ C

x ∈ A ∩ B

x ∈ A and x ∈ B

Conclude x ∈ A

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

● In general to show that     
S ⊆ T, pick an arbitrary     
x ∈ S, show that x ∈ T

● If you know that S ⊆ T and 
you have an x ∈ S, you can 
conclude x ∈ T.

● If you know that x ∈ S ∩ T, 
we can conclude that x ∈ S 
and x ∈ T. that S ⊆ T, pick 
an arbitrary x ∈ S



  

Rough Outline Relevant Definitions

● Assume C ⊆ A ∩ B
● Proving C ⊆ A

● Pick an x ∈ C

x ∈ A ∩ B

x ∈ A and x ∈ B
● Conclude x ∈ A

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

● In general to show that     
S ⊆ T, pick an arbitrary     
x ∈ S, show that x ∈ T

● If you know that S ⊆ T and 
you have an x ∈ S, you can 
conclude x ∈ T.

● If you know that x ∈ S ∩ T, 
we can conclude that x ∈ S 
and x ∈ T. that S ⊆ T, pick 
an arbitrary x ∈ S



  

Rough Outline Relevant Definitions

● Assume C ⊆ A ∩ B
● Proving C ⊆ A

● Pick an x ∈ C

x ∈ A ∩ B

x ∈ A and x ∈ B
● Conclude x ∈ A

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

● In general to show that     
S ⊆ T, pick an arbitrary     
x ∈ S, show that x ∈ T

● If you know that S ⊆ T and 
you have an x ∈ S, you can 
conclude x ∈ T.

● If you know that x ∈ S ∩ T, 
we can conclude that x ∈ S 
and x ∈ T. that S ⊆ T, pick 
an arbitrary x ∈ S

What goes here?



  

Rough Outline Relevant Definitions

● Assume C ⊆ A ∩ B
● Proving C ⊆ A

● Pick an x ∈ C
● x ∈ A ∩ B

x ∈ A and x ∈ B
● Conclude x ∈ A

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

● In general to show that     
S ⊆ T, pick an arbitrary     
x ∈ S, show that x ∈ T

● If you know that S ⊆ T and 
you have an x ∈ S, you can 
conclude x ∈ T.

● If you know that x ∈ S ∩ T, 
we can conclude that x ∈ S 
and x ∈ T. that S ⊆ T, pick 
an arbitrary x ∈ S
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Rough Outline

● Assume C ⊆ A ∩ B
● Proving C ⊆ A

● Pick an x ∈ C
● x ∈ A ∩ B
● x ∈ A and x ∈ B
● Conclude x ∈ A

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

We also need to prove that C ⊆ B. 

Notice that if you take the outline here 
and literally swap the variable A for the 

variable B, you get a working proof. 



  

Rough Outline

● Assume C ⊆ B ∩ A
● Proving C ⊆ B

● Pick an x ∈ C
● x ∈ B ∩ A
● x ∈ B and x ∈ A
● Conclude x ∈ B

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

In a case like this where your proof 
would have two completely symmetric 
branches, it’s fine to write up just one 

and say 
“by symmetry, [the other branch] 

is also true.” 



  

Rough Outline

● Assume C ⊆ A ∩ B
● Proving C ⊆ A

● Pick an x ∈ C
● x ∈ A ∩ B
● x ∈ A and x ∈ B
● Conclude x ∈ A

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
C ⊆ A and C ⊆ B.

Try it yourself: Take a few 
minutes and write up a proof of 
the theorem using this outline. 

Then share your proof with your 
neighbors and critique each 

other!

Respond at 
pollev.com/zhenglian740



  

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then  
     C ⊆ A and C ⊆ B.

Proof: Let A, B, and C be arbitrary sets where 
C ⊆ A ∩ B. We need to show that C ⊆ A and C ⊆ B.  

     Because the roles of A and B in this proof are          
  symmetric, we can just prove that C ⊆ A. 

Choose any element x ∈ C. Since C ⊆ A ∩ B, we 
know that x ∈ A ∩ B. This tells us that x ∈ A and     
x ∈ B. In particular, this means that x ∈ A, thus 
completing the proof. ■  
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completing the proof. ■  

Are you clearly stating what you’re assuming and what you’re trying to prove? 
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know that x ∈ A ∩ B. This tells us that x ∈ A and     
x ∈ B. In particular, this means that x ∈ A, thus 
completing the proof. ■  

Are you making specific claims about specific variables? Your proof should NOT have 
statements of the form “every element of C”. 



  

Theorem:  If A, B, and C are sets and C ⊆ A ∩ B, then 
     C ⊆ A and C ⊆ B.

Proof: Let A, B, and C be arbitrary sets where 
C ⊆ A ∩ B. We need to show that C ⊆ A and C ⊆ B.  

     Because the roles of A and B in this proof are          
  symmetric, we can just prove that C ⊆ A. 

Choose any element x ∈ C. Since C ⊆ A ∩ B, we 
know that x ∈ A ∩ B. This tells us that x ∈ A and     
x ∈ B. In particular, this means that x ∈ A, thus 
completing the proof. ■  Are all variables properly introduced and scoped? You should be able to point at every 

variable and say that it is either: 
1) an arbitrarily chosen value – owned by the reader

2) an existentially instantiated value – owned by no one
3) an explicitly chosen value – owned by you (the proof writer)



  

Next Time

● First-Order Translations
● How do we translate from English into first-order logic?

● Quantifier Orderings
● How do you select the order of quantifiers in first-order 

logic formulas?
● Negating Formulas

● How do you mechanically determine the negation of a 
first-order formula?

● Expressing Uniqueness
● How do we say there’s just one object of a certain type?
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